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The motion of a time-periedic Hamiltonian system with one degree of freedom in the neighbourhood of an equih'brium po6ition 
is studied. It is assumed that the equilibrium is stable in the first approximation and that fourth-order resonance is present. The 
critical case is considered, when the system parameters are such that, in order to draw rigorous conclusions about the stability 
of the equilibrium, terns of order higher than four in the series expansion of the Hamiltonian must be taken into aocount. Sufficient 
conditions are derived for stability and instability, and the bifurcations of periodic motions are investigated in the neighbourhood 
of the equih'brium posiition when the system parameters pass through values corresponding to the critical case. The results are 
applied in the problem of the motion of a sphere in a uniform gravity field when there are collisions with the surface of an elliptic 
cylinder with a horizor=tal generator. O 1997 Elsevier Science Ltd. All rights reserved. 

1. S T A T E M E N T  OF T H E  P R O B L E M  

Consider a systerv~ with one degree of  freedom whose motion is described by canonical differential 
equations with a 2x-periodic time-dependent Hanfiltonian H(x,y, t). It is assumed that the origin x = 
y = 0 of  the phase space is an equilibrium position, and that the function H is analytic in the neighbour- 
hood of  the origin or, at least, that the partial derivatives of H up to a sufficiently high order are 
continuous. 

Suppose that the characteristic exponents of  the linearized equations are pure imaginary numbers 
__.ik (k > 0) and that the system has no resonance o fo rde r  up to and including three (that is, kZ is no 
an integer for any of  k = 1, 2, 3), but has a resonance of  order four: 4~, = N, where N is an integer. 

Using canonical transformations, one can choose the variables x and y so that the first few forms in 
the series expansion of  the Hamiltonian are normalized [1, 2]. Suppose this has already been done. 
Then, as can be shown by suitable reduction, the Hamiltonian can be written as 

m 

H = LX + Y. [ y ,  + oc, sin(4 Z - Nt) + ~J, cos(4 Z - NO]x" + O('c m*l ) 
n=2 

(1.1) 

where x = ~/(2x) sta Z, Y = ~(2x) cos Z, m is a sufficiently large natural number, o~, [in, y, are constant 
coefficients, and the quantity o(xm+l~ is 2x-periodic as a function of t. 

Let us assume that Y2 and ~ + [~ do not vanish. We perform a canonical change of  variables Z, 
--, q~, r by the formulae 

Z= ~4Nt+ z. +O[~(l+o)lt+q~], t=6r 

(1.2) 
8=((x~+[i~) -)~, s i n 4 x . = & x 2 ,  c 0 s 4 ~ . = 8 ~ 2 .  G=sigrlY2 

This transformation cancels the term linear in r in the new Handltonian and eliminates the time in 
terms up to and including r m. In the new variables 

m 

H = ( x  - cos4q))r  2 + Y, (c. + a  n sin 4q) + b .  cos4cp)r" + O ( r  m+l ) (1.3) 
n=3 

x = 81y21. c,=<~8"-17., an=EYSn(a2~n--~J20~n), bnm--sn(o~20~n4-~J2~Jn) (1.4) 

The term O(r re+l) in (1.3) is 8g-periodic in t. 
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Let us consider the approximate system of equations of motion defined by the truncated Hamiltonian 
h = (x - cos 44p)r 2, which is obtained from (1.3) by ignoring terms of  order greater than two in r. Phase 
portraits of this system in the Yl, Y2 plane, where Yl = ~(2r) cos tp, Y2 = ~/(2r) sin ¢p, are shown in 
Fig. l(a--e) for the eases 0 < ~ < 1, x = 1 and z > 1, respectively. 

The asymptotic trajectories in Fig. l (a)  lie on the rays 9 = __.1/4 arccos x + 1/2ht (l = 0, 1, 2, 3). The 
period of the motion along the closed trajectory in Fig. 1 (c) is 2K(k)[ (~ + 1 )h ]-1/2, where K is the complete 
elliptic integral of  the first kind, k 2 = 2(~ + 1) -1, h is the energy integral constant and the maximum 
and minimum values of  r on such a trajectory are (x - 1)-U2h lt2 and (x + 1)-~h v2, respectively. 

It has been shown [2] that when 0 < x < 1 the equilibrium position at the origin is unstable, but  if 
x > 1, it is stable, not only in the approximate system with truncated Hamiltonian but also in the full 
system defined by the Hamiltonian (1.3). 

The ease x = 1 is critical. In the approximate system with × = 1 all points on the coordinate axes 
are equilibrium positions and they are all unstable (Fig. lb). Examples show [2] that terms of  order 
higher than two in r in the Hamiltonian (1.3) may lead to either stability or instability of  the origin. 

I n  this paper conditions will be obtained for stability and instability in the critical case x = 1. These 
conditions may be written as inequalities involving the coefficients y,,, o~, 13n (n t> 3) of the normalized 
Hamiltonian (1.1). We will also investigate the problem of bifurcations of periodic motions in the 
neighbourhood of the origin as the quantity t: passes through its critical value t¢ = 1. 

2. F U R T H E R  T R A N S F O R M A T I O N  OF T H E  N O R M A L  F O R M  
OF T H E  H A M I L T O N I A N  

We apply a univalent canonical transformation tp, r ~ ¥, R in (1.3), by the formulae 

¢p = w + k i R  + k 2 R 2  + . .  .,.t, o r e -2  • ' '~m-2""  , r = R (2.1) 

The constant coefficients ki in (2.1) may be chosen so that the transformed Hamiltonian will not contain 
sin4¥ in terms of  order up to and including m with respect to R. For example, the coefficients kl and 
k2 must be defined by the equalities kl = -1/4a3, k2 = -1/4(a4 + a3b3). 

The transformed Hamiltonian (1.3) may be written as 

H= ~ ~nR n +(I-cos4~)~ enRn+O(R =+I) 
n=2 n=2 

(2.2) 

The coefficients 8n and en can be expressed in terms of  the coefficients of (1.3). In particular, we have 
e2 = 1 and 

82 = ~ -  1, ~i3 = c3 + b3, 84 = c4 + b4 - ~ a32 (2.3) 

In the critical case the coefficient 52 in the first sum of (2.2) vanishes. Suppose that the next coefficient 
53 is not zero. To investigate the critical and near-critical cases, it will be convenient to perform one 
further change of  variables ¥,  R, t ~ 0, p, "q, using the formulae 

Fig. 1. 
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¥ = o, R = i~tqp, t = I~tn. 

In the new variables, the motion is described by canonical equations with the Hamiltonian 

H = ( x -  cos 40)p 2 + [s +k(1 - cos 40)]p 3 + O(p 4) (2.4) 

w h e r e  s = s ign 83,/¢ = 1 83 I-le3 . . . .  

3. S T A B I L I T Y  I N  T H E  C R I T I C A L  C A S E  

Assuming that ~3 # 0,'let us consider the approximate system with Hamiltonian F(0, p) obtained 
from (2.4) by dropping terms of higher than third order of smallness in p. The approximate system is 
integrable and can be fully investigated. For sufficiently small p, the phase trajectories of this system 
in the critical case (x = 1) are shown in Figs 2(b) and 3(b) in the xl, x2 plane, where 

x, = ~ c o s 0 ,  x2 = fl2-psin 0 (3.1) 

Figure 2(b) corresponds to the case s = -1 (83 < 0) and Fig. 3(b) corresponds to the case s = 1 (~3 
> 0). In the approximate system, the equilibrium position at the origin is unstable when 83 < 0 and 
stable when 83 > 0. We will show presently that these conclusions hold not only for the approximate 
system but also for the system described by the equations with the full Hamiltonian (2.4). 

Taking into account that. by (1.4) and (2.3), the expression for ~3 in terms of the coefficients of 
Hamiltonian (1.1) is ~3 = 53"[Y2Y3 - (~a3  + IbiS3)], we can formulate the last statement as the following 
theorem. 

Theorem 1. If the coefficients of Hamiltonian (1.1) are such that I V21 = ~((x22 + ~22), but at the same 
time 

'~2'~3 < (X2(X3 + [~2~3 (3.2) 

(a) (b) (c) 

Fig. 2. 

(b) (c) 

Fig. 3. 
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then the equilibrium position x = y = 0 is unstable; if the inequality obtained from (3.2) by reversing 
the inequality sign is true, then the equilibrium position is stable. 

To prove instability, we define a function V as follows: 

V = p2 sin 40 (3.3) 

Taking into account that z = 1, while by condition (3.2) we have s = -1, we obtain an expression for 
the derivative of Valong trajectories of  the equations with Hamiltonian (2.4) 

dV / dq = --.4p 3 [(1 - cos 40)(2 + O(p)) + p(3 + O(p))] (3.4) 

For sufficiently small p, this function is negative-definite. But since the function Vis of fixed sign, it 
follows by Lyapunov's first instability theorem [3] that the equilibrium is unstable when inequality (3.2) 
holds. 

Now suppose that inequality (3.2) holds with the reverse sign. Thens  = 1 and F(0, p) + p3 + vp2(1 + 
kp), where v = 1 - cos 40. The approximate system is described by the equations 

dO / dr I = 3p 2 + vp(2 + 3kp), dp / dq = -4p2(1 + kp)sin 40 (3.5) 

and it has an integral F(0, p) = h = const. 
We take p to be so small that the fight-hand side of the first equation in (3.5) is positive and the sign 

of  the right-hand side of  the second equation the reverse of that of sin 40 for any k. For small p, we 
have 0 < h < 1. 

We now put h = h0 and, considering the equation F(0, p) = h0, find the root p = p0(0, h0), which 
describes a phase trajectory of system (3.5) encircling the origin which will "collapse" into the origin 
as h0 --> 0. The phase trajectory is shown in Fig. 3(b). The maximum and minimum p values on this 
trajectory are given by the expressions 

Pmax =ho )~, Pmin = N/2"h0 ~ /2 - ( ]+2k )ho /8+O(h~ / : )  

Ifh = h0 + g(I g I ~< 1), the root p(0, h) of the equation F(0, p) = h can be represented by a convergent 
series in powers of g: p = P0 + gPl + • • . ,  where p1-1 = 3p02 + vp0(2 + 3kp0) > 0. 

Let  l (h)  be the action variable in the approximate system (3.5) (I(0) = 0). Near the phase curve p 
= p(0, h), l (h)  may be expanded in series 

1 2x 1 2x 
p e, . . . .  ":T.! p,d0 0 

where 1o is (2x) -1 times the area inside the phase curve p = p(0, h0). It follows from the inequality/1 
0 that the function inverse to l ( h ) , h  = h(l),  is analytic in 0 < I ~< 1. 
Considering the full system with Hamiltonian (2.4) (with x = 1 and s = 1), if we make the change 

of  variables 0, p ~ w,/ ,  which transforms the function F(0, p) to action-angle variables, we obtain the 
Hamiltonian of the full system in the form 

H = h(l) + hi(w, 1, rl) (3.6) 

where the function hi has period 2n in w and 8 r ~  -1 in rl and is analytic or at least has continuous 
derivatives to sufficiently high order for 0 < I ~< 1; moreover hi = o(h(1)) as I ---> O. 

Consider the area-preserving mapping of the neighbourhood of  the origin defined by the motions 
of  the system with Hamiltonian (3.6) over the period 8m53 -1 of the variable 11. A necessary and sufficient 
condition for the origin to be stable is that, in any arbitrarily small neighbourhood of  the origin, a 
curve encircling the point I = 0 exists which is invariant under this mapping [4]. The existence of such 
curves follows from a theorem of Moser [5] provided the non-degeneracy condition d2hldI 2 ~ 0 is 
satisfied. 

It can be shown that 

a r(ar] - '  1 j 
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where the integrals are evaluated along a closed trajectory p = p(0, h) of the approximate system (3.5) 
(Fig. 3b) and to is the frequency of motion for that trajectory. 

Since the quantities 0F/~p = 3p 2 + vp(2 + 3k0) and ~2F/0p2 = 6p + 2v(1 + 3kp) are positive for 
sufficiently small p, it follows from (3.7) that d2h/dl 2 > 0, and so the non-degeneracy condition is satisfied. 

This proves the stability statement of Theorem 1. 

Remark. Suppose that in the critical case for Hamiltonian (2.2) not only 82 but also 83 vanish, but 84 ~ 0. Then, 
as in the case 83 ;~ 0, one can prove that when 84 < 0 the origin is unstable and when ~4 > 0 it is stable. An expression 
for 54 it is stable. An expression for 54 in terms of the coefficients of Hamiltonian (1.1) is obtained from formulae 
(1.4) and (2.3). 

Corollary. The results of [2] and of this section imply the following statement about the stability of 
equilibrium in the presence of fourth-order resonance 4k = N, which is valid in both critical and non- 
critical cases. 

Theorem 2. If 8,n is the first non-vanishing coefficient in expansion (2.2), the problem of the stability 
of the equilibrium at x = y = 0 is solved by examining the terms of degree up to and including 2m in 
the series expansion of H(x,y, t): if 8m < 0, the equilibrium is unstable, and if 6m < 0, it is stable. 

4. MOTIONS IN N E A R - C R I T I C A L  CASES 

Let us assume that 53 ~e 0 and consider the behaviour of the system as the parameter K passes through 
its critical value 1. Setting × = 1 + £(I £ I ~< 1) in (2.4), we obtain the equations of motion 

dO / dq = 2(1 + £ - cos 40)p + 3[s + k(1 - cos 40)]p 2 + O(p 3 ) 

(4.1) 
dp/  dtl = -4p 2 (1 + kp)sin 40 + O(p 4) 

4.1. First let 53 < 0 (s = -1). As shown in Section 3, in that case when £ = 0 the equilibrium position 
at the origin is unstable. 

Let us consider the approximate system of equations obtained from Eqs (4.1) by omitting quantities 
that are O(p 3) and O(p4). Phase portraits for small p are shown in Fig. 2 in the xa, x2 plane, where xl 
and x2 are defined by (3.1). 

In Fig. 2(a) £ is negative. The phase trajectories are obtained by a small deformation of the corres- 
ponding trajectories in Fig. l(a). For example, the asymptotic trajectories in Fig. 2(a) no longer lie on 
straight lines passing through the origin; they are defined by the equations 

O=+[~arccos( l+£)+( l+~) l£1  -~(2+£)=)~p+O(p2) l+ ln /2  (1=0, 1, 2, 3) 

If we let e --> 0, ]Fig. 2(a) is transformed into Fig. 2(b), where the asymptotic trajectories are tangent 
to the coordinate axes. 

Figure 2(c) corresponds to the case e > 0. In the approximate system, besides the origin, there are 
nearby equilibrium positions p., 0., where 

p , = ~ e ,  O,=)~mt (n=O, 1, 2, 3) (4.2) 

These points are represented in Fig. 2(c) by singular points of the saddle type. The saddle points are 
linked by heteroclinic doubly-asymptotic trajectories---separatrices. The direction at which they enter 
or leave a saddle l~oint makes an angle acrtg q(3e/[2(3 + 2k~))) with the coordinate axis on which the 
point lies. The separatrices define a part of the phase space filled out by closed trajectories that encircle 
the stable equilibrium positionxl = x2 = 0. These trajectories are obtained by a small deformation from 
the corresponding phase trajectories of Fig. l(b). As £ ---> 0 the closed trajectories, saddle points and 
separatrices all "cxdlapse" into the origin, and one gets Fig. 2(b). 

It can be shown, using Poincar6's small parameter method, that for sufficiently small £ the saddle 
points of the approximate system give rise to a periodic solution of the complete system (4.1) that 
is an analytic function of v.. To this solution there corresponds a motion of the system with the original 
Hamiltonian (1.1) which is 8x-periodic in t and, as £ ~ 0, tends to the equilibrium position x = 
y = 0. Calculations show that the characteristic exponents of this periodic motion for small £ are 
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--8~/2(3153 I)-lE 3;z + O(~;z). Since one of  them is positive, it follows from Lyapunov's theorem of stability 
in the first approximation [3] that the periodic motion is unstable. 

Thus, if 53 < 0, then, as the parameter )~ passes through its critical value g = 1 from the domain 
)~ < 1, the unstable equilibrium positionx = y = 0 becomes stable and an unstable 8x-periodic motion 
splits off. 

4.2. Now let 53 > 0 (s = 1). In that case, when e = 0 the origin is stable. 
As in Section 4.1, we first consider an approximate system. Its phase trajectories are defined by the 

equation p3 + vp2(1 + kp) + epe = h = const; they are shown for small p in Fig. 3. 
In Fig. 3(a) the number e is negative. The origin is unstable. The approximate system also has 

equilibrium positions p., 0, distinct from the origin. These equilibria are defined by equalities (4.2) with 
E replaced by I E I. The equilibria p., 0. are represented in Fig. 3(a) by singular points of the centre 
type, at which h = (4/27)~ 3. If (4/27~ s < h < 0, the phase trajectories are closed and encircle the centres. 
At h = 0 one has an unstable equilibrium--the origin, and homoclinic trajectories doubly-asymptotic 
to this equilibrium---separatrices. On them p = -(~ + v)(1 + kv) -1, and the angle 0 varies in narrow 
sectors 0 - 1/2nnl < A (n = 0, 1, 2, 3), where A = 1/4~21¢1(1 + O(E)), and the maximum value of  p is 
I ~ I. At h > 0 the phase trajectories are closed curves encircling all the singular points and separatrices. 
On these trajectories, for small ] E ], the quantity p = p(0, h) differs only slightly from the analogous 
quantity for the closed curve in Fig. 3(b) with the same h value. If h > 0 and the Hamiltonian of the 
approximate system is transformed to action-angle variables, then for small I E ] the quantity d2h/dl e 
will differ only slightly from the analogous quantity in (3.7) and, in accordance with Section 3, will not 
vanish, that is, for h > 0 and small I ¢ I the Hamiltonian of the approximate system is non-degenerate. 

As E --> 0, the doubly-asymptotic trajectories and the domains surrounding them in Fig. 3(a) "collapse" 
into the origin, and at ~ = 0 one obtains the phase portrait shown in Fig. 3(b). 

The phase portrait of the approximate system for e > 0 is shown in Fig. 3(c). It is obtained from that 
of  Fig. 3(b) by a small deformation. 

It can be shown by Poincar~'s method that the centre-type singular points existing in the approximate 
system when e < 0 (Fig. 3a) give rise, for sufficiently small ] ~ I, to a periodic solution of the full system 
(4.1) which is analytic in ~ and, as ~ ---> 0, tends to an equilibrium position at the origin. Corresponding 
to this solution is a motion of the initial system with Hamiltonian (1.1) which is 8x-periodic as a function 
of t. Calculations show that, for suitably chosen perturbations q andp,  the Hamiltonian of the perturbed 
motion for this periodic motion admits of a normal form 

H = ~f~(q2 +p2)+~c(q2 +pe)2 +O((q2 +p2)~) 

D. = (~)~r2lel 3A (1 + O(~)), c = -(68 / 3)(1 + O(e)) 

If I e I is sufficiently small, c does not vanish. Hence, it follows from Moser's invariant curve theorem 
[5] that the periodic motion is stable. 

Another corollary of Moser's theorem and the non-degeneracy of the Hamiltonian of  the approximate 
system when h > 0 (as noted above) is that, irrespective of the fact that when e < 0 the equilibrium 
position x = y = 0 is unstable, the trajectories of  the motion in its neighbourhood are bounded: if a 
trajectory begins close enough to the origin, as the motion continues the function p(t) will not exceed 
a quantity of  the same order as I E I (recall that I e I is the maximum value of  p on the doubly-asymptotic 
trajectories of Fig. 3a). 

As the parameter x passes through the critical value x = 1 from the domain x < 1 to the domain x 
> 1, the 8n-periodic motion (with respect to t) shrinks to the origin at x = 1 and disappears when x > 
1, while the origin itself becomes stable. 

5. E X A M P L E .  T H E  M O T I O N  OF A S P H E R E  ON T H E  S U R F A C E  
OF AN E L L I P T I C A L  C Y L I N D E R  

L~t us consider the motion of a sphere in a gravity field over a motionless, absolutely smooth open channel shaped 
like an elliptical cylinder with horizontal generator. As the sphere moves, it collides from time to time with the 
surface of the channel. We will assume that the collisions are absolutely elastic. The motion may be considered 
relative to a fixed system of coordinates, ~TI~ whose Vl axis is vertical and whose ~ a~s points along the generator. 
We will assume, without loss of generality, that the projection of the velocity of the centre of the sphere onto the 

axis, which is constant throughout the motion, is equal to zero. Ignoring the dimensions of the sphere, we arrive 
2 2 2 2 at the problem of the plane motion of a point mass over an arc of an ellipse ~ a" + (q - b )  b- ffi 1 [7]. 



Four th -order  resonance  in a Hamil tonian  system with one  degree  o f  f r eedom 361 

A periodic motion of the point exists in which its trajectory lies on the vertical 11, and the point itself, owing to 
collisions with an m~: of the ellipse at the origin ~ = 11 = 0, periodically jumps to a certain height 1. The period of 
this motion equals l~he time 2~/(2//g) between two consecutive collisions. 

Sufficient conditions have been obtained for this periodic motion to be orbitally unstable and iso~nergetically 
orbitally stable. In particular, it has been shown that there is a fourth-order resonance in the 0t, 13 plane, where 
(x = a2b :2,13 = /b  -1, on the ray J3 = 1/4a. The points c (5, 5/4) and d (10, 5/2) divide this ray into stable and unstable 
parts (in the notation of this paper, one has ~ = 1 at these points). When 0 < ot < 5 or oc > 10, one has orbital 
stability (here g > 1), while if 5 < ot < 10, the periodic motion is orbitally unstable (here g < 1). 

Let us consider the stability of the periodic motion at the critical points c and d. To do this, we fix an energy 
level equal to rag/and, following [7], use Poincar~'s section surface method to construct an area-preserving mapping 
of  the ~,p~ plane into itself (where p~ is the momentum corresponding to the ~ coordinate). The periodic motion 
of the sphere is represented by a fixed point ~ = 0,p~ = 0 of the mapping. In the neighbourhood of that point the 
mapping is analytic. By using a real analytic canonical transformation ~,p~ --> u, v it has been reduced to normal 
form up to and inchlding terms of order six. In complex conjugate variables ~ = u - iv, ~ = u + iv, the normalized 
mapping may be written as 

;, = i; + + -' + + :;o; + +07 (5.1) 

We will not dwell here on the rather cumbersome procedure for calculating the coefficients f~. 
Corresponding to the mapping (5.1) (as for any analytic area-preserving mapping) we have [I] a Hamiltonian 

H(~, ~, t), 2x-periodic in t, of class c. which, if not analytic, is such that over the time 2~ the transformation realized 
by the motions of the system with that Hamiltonian is identical with (5.1). It can be shown that the Hamiltonian 
H can be chosen as follows (4~, = I): 

H = i k ~ +  722(;~) 2 +74oe-i t;  4 4-ro4eit'~ 4 4-~33(;~) 3 4. ~5,e-/t; '~ 4.)'lse/t;~5 4.O8 (5.2) 

where the coefficients Yta do not depend on t. For brevity, we omit their expressions in terms of the coefficients of 
the mapping (5,1). 

After the canonical change of variables ~ = -i~[(2x)e ix, ~ = i~/(2%)e -/x, Hamiltonian (5.2) takes the form of (1.1). 
Calculations have shown that the coefficients 0tn, 13,, T, (n = 2, 3) at the point c are as follows: (~2 = 0, I~ = -'T2 = 
5/(64~), ~t 3 = 0, I~ = -5/(512~), )'3 = --49/(1536~), and those at the point d are: tz2 = 0, ~ = Y2 = 5/(32z), 
m = 0, I~ = 45/(12~3~), )'3 = 89/(384n). 

It follows from condition (3.2) that at the critical point c the periodic motion of the sphere along the vertical is 
iso-energetically orbitally stable, but at d it is unstable. 
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